Droplet Phases in Non-local Ginzburg-Landau Models with Coulomb Repulsion in Two Dimensions

نویسندگان

  • Cyrill B. Muratov
  • C. B. Muratov
چکیده

We establish the behavior of the energy of minimizers of non-local Ginzburg-Landau energies with Coulomb repulsion in two space dimensions near the onset of multi-droplet patterns. Under suitable scaling of the background charge density with vanishing surface tension the non-local Ginzburg-Landau energy becomes asymptotically equivalent to a sharp interface energy with screened Coulomb interaction. Near the onset the minimizers of the sharp interface energy consist of nearly identical circular droplets of small size separated by large distances. In the limit the droplets become uniformly distributed throughout the domain. The precise asymptotic limits of the bifurcation threshold, the minimal energy, the droplet radii, and the droplet density are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Γ-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density

This is the first in a series of two papers in which we derive a Γ-expansion for a two-dimensional non-local Ginzburg-Landau energy with Coulomb repulsion, also known as the Ohta-Kawasaki model in connection with diblock copolymer systems. In that model, two phases appear, which interact via a nonlocal Coulomb type energy. We focus on the regime where one of the phases has very small volume fra...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

The Γ - limit of the two - dimensional Ohta - Kawasaki energy . II

This is the second in a series of papers in which we derive a Γ-expansion for the twodimensional non-local Ginzburg-Landau energy with Coulomb repulsion known as the Ohta-Kawasaki model in connection with diblock copolymer systems. In this model, two phases appear, which interact via a nonlocal Coulomb type energy. Here we focus on the sharp interface version of this energy in the regime where ...

متن کامل

The !-Limit of the Two-Dimensional Ohta–Kawasaki Energy. Droplet Arrangement via the Renormalized Energy

This is the second in a series of papers in which we derive a !-expansion for the two-dimensional non-local Ginzburg–Landau energy with Coulomb repulsion known as the Ohta–Kawasaki model in connection with diblock copolymer systems. In this model, two phases appear, which interact via a nonlocal Coulomb type energy. Here we focus on the sharp interface version of this energy in the regime where...

متن کامل

A Tropical View on Landau-ginzburg Models

We fit Landau-Ginzburg models into the mirror symmetry program pursued by the last author jointly with Mark Gross. This point of view transparently brings in tropical disks of Maslov index 2 that group together virtually as broken lines, introduced in two dimensions in [Gr2]. We obtain proper superpotentials which agree on an open part with those classically known for toric varieties. Examples ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009